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Dynamic Response of Inhomogeneous Fermi Systems

Sudip Chakravarty, Martin B. Fogel and Walter Kohn

Department of Physics, University of California San Diego

La Jolla, California 92093

ABSTRACT

This paper presents a theory of the linear density response

to an external time dependent scalar potential for a Fermi

system whose unperturbed density varies slowly on a scale

— 1I. >> ~~~ , where p~. is a characteristic Fermi momentum.

Simple local density functional response theory is valid

• except in a region of small q and w (wave number and fre-

quency of the perturbation). For this region we have

worked out a generalization , to the case of inhomogeneous 
—

;:-~ c~i
systems, of the classical Landau Fermi liquid theory~~~~~~~~~~~ 1
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This paper deals with Fermi systems at zero temperature whose

unperturbed density, n0(r), varies slowly on a scale £ >> p~~ , where

is a typical local Fermi momentum. We wish to calculate the

linear density response of such a system to an external scalar

potential, v ( r ,t), which we write as

V 1
e(T ,~~) — 4 f v~(q,w)et~~~E — Wt)dq dw (1.)

(21r) —

For the time being ye consider only neutral systems with short range

forces; extension to charged systems poses no significant problems.

For several (overlapping) regimes of q and w the necessary theory

is already available. In view of the slow spatial variation of

a plausible ansatz for the density response is the local density

approximation

n1(r,~) I x (r—r ’, w; n
~

(r ))  v e(r I w) dr’ , (2)

where X(
~—E” 

w; no) is the dynamic response function of a system

of uniform density, n0. This ansatz is in fact valid under the

following circumstances:

(I) w << vFq (vF — Fermi velocity). In this case X is to a

good approximation the static X, which is known to have a short range

of the order of p
~~ 

or of the range of the forces (region (I) in Fig. 1).

• (II) w> > v~,/L. Again X has a-short range of the order of v~.Iw or

(region (II) in Fig. 1).

(III) q >> 9.~~
.. Here q denotes a characteristic wave—number ~~

The effective range of x is no larger than q~~ (region (III) in Pig. I?!

. - -
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It can be seen from Fig. 1, that there is a region, R, shown

enclosed by heavy lines, which is not covered by the above three

regions. Here we develop a theory which is valid in the following regime,

(IV) q << p~, w << 
~F 

(region (IV) in Fig. 1, shown enclosed by

dashed lines). This is the region of validity of the classical

Landau theory of Fermi liquids.~
2) If £ is large enough, region (IV)

includes R, and therefore our theory compliments the local density

approximation (2).

Our theory is the generalization of Landau theory for systems

of slowly varying density. Since the Landau theory for homogeneous

systems is valid for long wavelength perturbation, it is plausible

that it can be extended to inhomogeneous systems whose unperturbed

• density varies on a scale 9. large compared to p
~~
.

For a homogeneous system, subject to an external potential

the Landau transport equation for the quasiparticle dis—

tribution function, n1(p,r,t), is obtained from the classical Hamilton’s

equations using the effective Hamiltonian

H(p,r,t) c(p) + v 1
5(r ,t) +~~~ ~~~ n 3 (p ’,r ,t) . (3)

Spin indices have been suppressed. Here

2 Pp 
-

(4)
.
~~ 2m* 2m*

is the one particle energy and the last term arises from short range

quasi—particle interactions. Our generalization for an inhomogeneous

— — - - -----—.

~

.- —--, ~~~~~~~~~~~~~~~~ •.:~~~~~~.•
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system is

R(p , r t )  — c(p ,r) + v 1
e(r ,t) +~~~~ f~~ , (r) n 1(p ’,r ,t) (5)

P 1 --
where

2 PF (E)
c(p,r) — ; (6)

— 2m*(r) 2m*(r)

m*(r) and ~~~~ are equal to the homogeneous Fermi liquid

parameters f~~,, m* and ~F evaluated for the local density, n0 (r).

This ansatz is in the spirit of local density functional theory~
’
~

where all local physical quantities are determined by the local density.

The single particle energy e(p r) can be derived from the theory

of single particle properties of the inhomogeneous electron gas~
’
~.

It can also be understood as follows. The local wave number of a

quasiparticle of vanishing excitation energy is equal to

2p~ (r) — (31r n (r)] . (7)

(This relationship is unaffected by interactions) . In a system in

equilibrium, quasiparticles of vanishing excitation energy must have

• the same single particle energy at any two points r 1 and r2 . In view of

(7) this is correctly described by the expression (6) . Further , at a

given r, the momentum dependence of c for small p — p~ (r) must be

given by the local value of m*(r) as is the case for our expression

(6) .

The external perturbation , v~~ and the interaction term of H

are the same as in the homogeneous Landau theory , except that,

~~~~~ ~~~~~~~--~~~~~~~~~~~~~~- -~~~~~~~~~-• - -~~~~~~~-- -— • —  ——~~~~~~~ - ~~~~~~~~~~~~~ 



- ~~~~~~~~~~~~~~~~~~~~~~~

— ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ • • -• •---- - •

4

because of the short range of the interaction, f~~~(r)~ is not a

constant but corresponds to the local density.

The collisionless transport equation is

~~~
+
~~~

• V p fl+
~~~

•V r f l m O  (8)

where p and r are determined by Hamilton’s equations,

~~~~~~vr H ; r vp H 
- 

(9)

We write

n(p,r,t) — n0 (p, r) + n 1(p, r ,t) , (10)

lubstitute (9) into (8) and linearize:

~~ n1 (p,r,t) + V~ c(p,r).V~ n1 (p,r,t) — V,. ~~(~~‘~~)‘~~~ f1(~,E,
t)

— V~, n~,(p,r).7~ v1~~r,t + V~ no(p,r)’Vr f~,,(r) n1(p’,r,t)

— y
r n0(P~r)1V~ f~ ,,( r) n1 (p’,r,t) . 

(11)

This integro—differential equation can be solved by a variety of

techniques. Here we regard it as describing the flow of classical

particles under the action of the Hamiltonian c(p,r) and with a (self—

• consistent) source S1 (p,r,t) equal to the right hand side. Consequently

we are led to defi~ie the following Green’s function

C(p,r ; p’r’ ; t—t’) — 6(p’ — P (p, r ,t ’))
6(r ’ — Q (p,r,t’)) e(t—t ’) (12) 

-- - -—— - • • • - 
j  

•

_ _  
- 

~1• • • 
-~~~~ -~~~~ -~~~~~ -~~~•.-. .•
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where Q, P describe the trajectory of a particle moving under the

action of e(P,Q), which was created at time t’ at r’ with momentum

p ’ and arrives at r with momentum p at time t. The trajectories are

given by . . -

•

P — — VQ c(P,Q) , ~ — V~ c(P,Q) (l3a)

and

~P(t) — p , Q(t) a r (l3b)

The formal solution of Eq. (11) is then given by

n1(p,r,t) — ~1(p,r,t) + JG(p,r;p’,r’;t—t’)S1(p ’,r’,t’)dp’dr ’ dt’

(14)

where Is a solution of the homogeneous equation. If we now consider

a single time Fourier componen t of v~ , and the corresponding density

change

v~(r ,t) = v~(r ,W) e~~~~~ 1)t 
— 0~ . (15)

n1(p,r,t) — n1(p,r,w) e
)
~~~

t

then the equation (14) can be reduced to

n 1(p,r ,~ ) — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G(p ,r;p ’r ’,w) dp ’dr ’]

(16)

where

v~ (r ,w) +~~~ f~~ i(r )n 1 (P ’~ r ,w) (17)

and

— ~~~a~~~~-- - — — — • - -. . — — — •—
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G(p,r;p’,r’;w) a f ds ~~~~~~~~~ ó(p ’ — P(p ,r ,s))tS(r’ — Q (p,r,s))

(18)

has been omitted since , except exactly at resonance, the homogen-

eous transport equation has no solution.

Equation (16) is an inhomogeneous integral equation for n1 (p,r,w)

whose kernel C, Eq. (18), can be determined by calculating the

classical trajectories, Eq. (13). From n1(p,r,w) the induced particle

density is given by

~~‘w) ! 1(~,~ ,w) . 

(19)

To treat charged systems one merely makes the replacement

e n3(~~,w)
v 1

e (r ,w) v1
t(r,w) E v 1 (r ,~~) + f • 

dr ’ , • (20)
I r — r I

the total scalar potential.

The exact linear response function, x~ is defined by the equation

n1 (r ,w) f x (~,~’;w) v1
t(r? ,w) dr ’ (21)

where n 1(r ,w) is the exact induced particle density. Consider now

the following approximate expression:

x(r ,r ’;w) a x~~~ ’;w; n (r)) -

+ x LI(r,rI ; 3;

— x H (r_r I ; w; n (r)) ; (22)

_ _ _  

— 

— .-.--- -•- - •.--—— -- --~~~• — - .- -— . ---•— . --——-——.- • -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - .  ~~~~~~~~~~~~~
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here is the response function of a homogeneous system of density

u0; ~~ is the same quantity calculated from Landau theory; and X
LI

is the response function calculated in the present extension of Landau

theory to inhomogeneous systems. Provided £ is large enough, this

expression becomes arbitrarily accurate for all external perturbations

v 1
e (r ,w) regardless of the value of ~ and the characteristic wave

numbers q. For, in regions (II) and (III), the last two terms cancel

and X~ 
becomes an accurate representation; and in the remaining region

(q < ~~l and w < v
F
t
~~

) ,  the first and last term cancel and becomes

an accurate representation.

The expression (22) defines the response function as a functional

of the density: is determined by n and theoretical approximations

to it are availab1e~~~; ~~~ 
is well known in terms of the density—

dependent Landau parameters(6); and X
LI can be calculated with the

same Landau parameters by our theory. Thus the expression (22) can

be regarded as a dynamic response function in density functional theory.

For a non—interacting one—dimensional system, Eq. (16) can be

solved and leads to the following result for x:

x(x ,x ’ ,w) a — ~ 6 (x—x ’) 
+ 

i(s) 
, e~~

t(
~
C
~
)C’) (23)p~(x) ~~~~~~~ ~

where t(x,x’) is the time of transit between positions x and x’. This

formula has been checked by an independent calculation using the BWK

approximation. It is interesting to note that for w 0, thisX is

strictly local; for w << v~q the second term is effectively small 

:..
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compared to the first but of long range; and for larger w the second

term increases and becomes effectively of shorter range.

Extensions of this theory to other forms of external perturba-

tion are under study.

Although strictly speaking our theory applies only to systems

of very slow spatial variation, it should be interesting to apply

it to real systems whose density varies on an atomic scale.

This work has been supported in part by the National Science

Foundation and the Office of Naval Research.
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FIGURE CAPTION

Fig. 1. Region R is enclosed by heavy lines and region (IV) by the dashed

lines. Local density theory is valid in regions (I), (II) and (III)

but fails in region R; present theory is valid in region (IV). ~ is

a numerical constant , large compared to unity ; and 8 is a constant small

compared to unity.
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